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Ahstract~Ft)lIt"ving Atkinson and Craster (Pmc. R. Soc. [o"t/. A ..~. 605-633. 1991). Craster
and Atkinstln (1. ,\fair. PhI'.'. Solids. accepted. 1991). we consider the problem of quasi-static plane
strain fracture at the ink'rface between ditferent linear istltropic clastic ditfusive solids. i.e. fully
n)upled ptlr<)elastic and thernwelastic matcrials. The problem of quasi-static growing cracks or the
initiatit1n "f fracture betwcl:n thl: matl:rials is of particular intl:resl. In fabricated m;lteri;lls thl:re is
a pt)ssibility "f impl:rt"el:t btlnding or welding. hencl: fral:ture is often initiated nl:ar or at the interface.
We wnsitkr hl:rl: thl: slightly simpkr casl: when tlne of the matl:rials is rigid ami the interface is
citlicr ctlmpktely pl:rlnc;lbk (ct1nducting) tlr impl:rlneabk (insulatl:d). Such an assumptitln ahout
the inkrfacl: is ctlmmtln in gl:tlphysics and is rekvantttlthe case "ftwo c"mpktely dilli:rent m;lterials
weldcd t"gdhcr in industry

Thl: stl!uti"n ftlr impulsively tlpl:nll1g cracks is ctlnsidcred here using gcncral ptltcntial stllutitlns
tlf thl: ptlr<lelastlc (lhcrrJllld;lstic) equ;ltitlns uscd togl:thcr with L;lpl;lcc ;lnd Fouril:r tr;lnsforms.
Solution llil:n pr<,,'ccds hy USI: tlf thl: Wil:ncr I fopf tcchnique; thc rcsulting transformcd rcsults ;Ire
thl:n c\alllinl:d in thl: nl:ighb,'urlitltld tlf Ihl: crack til'. The tlscillatory singularity. as c;lleulakd hy
Williallls (I/,dl. S"is1llol. Soc. ,·/1II..,ico "I). 199 104. (959) for intcrf;lcial fr;lcture in hne;lr istltropic
dastil·lIy. Is rcwwrcd as a !Ml'llCubr casc. This oscillattlry singularity which prcdicts inter
pl'nctration of thc crack walls (Fngbnd. ,·IS,ln· J. ..11'1'/. M"d, . .12. 400 401. 1965) nccd not lead
us to disrcgard thc solulion. although it invalidall:s the rl:sults on the scale of the contact zone.
I'ruvidnllhis 'one is lIIuch slllalkr th;ln the crack length. Ihe resulls arc still valid 1<,1' the zone ncar
thl: cr;lck til'.

A contact lOne model of IhI: ('olllninou (.·ISM I,' J. A{II'I. Me,k. (977) tyre is then developed.
Thl: oscJ!btory solulion is thl:n used ;IS ;In outer solulion in the method of matched asymptotic
exp;lnsitlns ;IS in Atkulson (/111.1. Frai'lure IK. 161 177. 19K1a; /"1. J. Fruclure 19. 131 13K.
IlJX2h); this is then matchcd with an appropriate inJ1(:r solution to correct for thc unphysical
intl:rpendration of thl: crack walls. This approach is valid for small contact zone kngths due to the
inll.:rpl:ndration drl:cl.

The rrohlem of ste;ldily propagating fraclure is also hrielly considerl:d and thl: stress intensity
fal:tors and distinctive ncar ~rack tip p,'re pr.:ssure fields ar.: evaluated.

NOMENCLATURE

BiOI's codlicient of elli:~tive slress. i.e. th.: ratio of Iluid volume to the vulum.: change of solid
allowing the Iluid 10 drain. where 0 < :t '" I
is the hulk Ilwdulus x the coellicient of thermal expansion
Sk~mpton's pore pr.:ssure wetlicient. (Skl:mpton. (954) i.e. the ratio of induced pOl'': pressure to
thc v;lriation of mean normal wmpression under undrained conditions
generalized consolidation coellicienl
specilic heat pI:!' unit volullle in the ahsen~e of deformation
Kronecker ddta
dilatation
components of the strain tcnsor
pcrmeahility codTicient
eodlicicnt of heat cunductiun
is the shear modulus

d~ I I
dl' ' = Q is a measure of the chang.: in Iluid cont.:nt generated in a unit reference volume during a change of

pressure with the strains kept constant

t Permanent address: Department of Mathematics. Imperial College of Science. Technology and Medicine.
London SW7 2BZ. UK.
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mass of fluid per unit volume
drain<.-d and undrained Poisson ratios. where \' ,;;; '. ,;;; \
p,'rt: pressure. I.e. the increase in fluid pressure from a reti:n:nce pressure p"
mass flux vectlJr
reference density
the Laplace and FourIer Transform variables resp<."Ctlvel:
Sln:ss tensor
n:fi:rence temperature
incn:ase in temperature
displacement vector
variation of fluid content per unit reference volume. i.e. mass l)f t1U1d per umt volume. inttial density PI>

and the f,)!Iowing relalions are used in the text:
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For " <~ "" <: lthen ,; ? I. i"ote the saturated. incompressihlc limit (relevant for soil 1111:chanics) can he recovered
hy taking I'" ~ J. /l ~ 1 with the results that (j" - G. ,; ~ 1/. :.t - I. <' - 2(';" and Q -1_.

I. INTRODUCTION

Then: has been ret:urrent interest in the problem of interfacial fracture between linear
isotropic and anisotropic c1astit: materials. Bonded materials often fracture at or near the
interl~lce (Drory c{ ill.. 19XX). therefore it is of practical importam:e to study the mechanism
of fracture. By considering the fully coupled linear quasi-static elastic diffusive model of
Biot (1941, 1955) we can analyse the effect on fracture of the coupling of the pore pressure
or thermal fields (in poroclastic and thermoelastic materials respectively) with stresses
applied at infinity. Such materials differ from quasi-static clastic solids as a time dependent:e
is now introduced into the equations. for rapid loadings (compared with the diffusion time
scale) the material response is stiffer than for slower loadings. In the rapidly loaded
situations the pore fluid (in the porodastie case) cannot diffuse away rapidly. so the material
has a stitfer response. The pore pressure (or temperature) boundary conditions on the
surface of the material t:an allcct the response of the material. in particular with impermeable
boundaries the l1uid can be trapped. or its diffusion hindered. this can affect the response
of the material. The quantities of interest. the stress intensity factors or pore pressure
(temperature) fields arc also time dependent (or in steadily propagating cases. velocity
dependen t).

To gain a fundamental knowledge of fracture in diffusive elastic materials an under
standing of some model problems is required. in particular the singular stress fields and the
pore pressure (temperature) fields around a crack tip provide valuable information. In
previous works by the authors and others (Rice and Simons. 1976. Rudnicki and Kout
sibelas. 1991) some model problems of fractures were considered for homogeneous
materials. In Atkinson and Craster (1991) and Craster and Atkinson (1992) impulsively
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loaded and steadily propagating fractures were considered for fracture in previously undam
aged materials. in some cases this led to situations where the pore pressure boundary
conditions on the crack faces were different from those on the fracture plane ahead. The
resulting stress intensity factors as functions of time or velocity were then analysed. In a
pre-faulted or damaged material. Rice and Simons (1976) and Rudnicki and Koutsibelas
(1991) considered the steady propagation of a fracture along a permeable or impermeable
interface.

However. in some situations where a pre-existing fault lies at the interface between two
different materials. say a saturated highly permeable sandstone overlying an impermeable
granite. such homogeneous models are inappropriate and our aim here is to investigate
such situations.

The thermoelastic case is of interest in industrial applications and the poroelastic case
in geophysics. In particular. geophysicists assume that there are pre-existing faults which
are impermeable to the diffusing fluid (Rudnicki and Koutsibelas. 1991) and often fractures
or flaws may lie at the interface between different layers of porous material. In industrial
situations. cracks at the interface between materials in integrated circuit boards are a cause
of circuit failure: this often occurs in an environment where significant heating occurs.
Thcre have been to our knowledge no attempts to investigate the interaction between the
diffusing species and the solid elastic skeleton in such circumstances.

In linear. isotropic elasticity the oscillatory stress singularity at the crack tip was
calculated by Williams (1959) using an eigenfunction approach. but it is usually more
convenient to analyse the isotropic elastic bimaterial problem using the analytic function
method (M uskhelishvili. 1953). The unphysical interpenetration of the crack walls close to
the crack tip was noticed by England (\WI5) and others. When the two materials arc
incompressible the oscillatory singularity disappears: in the general case. the oscillatory
singularity can be rationalized ,IS the consequence of one of the materials having less
tendency to longitudinal expansion. The result is that surface wrinkling of the material
oceurs. leading to the mathematical result that the materials appear to overlap ncar the
crack tip. The extent of this interpenetration zone varies widely depending on the speeific
loading: for tensile loading the zone is a sm,llI fraction of the crack length. For a shear
loading. where the longitudinal expansion is significantly larger and the loading itself acts
to close the crack, the zone is consequently a large fraction of the crack length (Willis,
1972).

This interpenetration anomaly was initially thought to invalidate the analysis, the
apparent contradiction being rectified by the contact zone model ofComninou (1977, 1978)
who formulated the finite length crack problem as a distribution of edge dislocations along
the interface with auxiliary conditions. This reduced the problem to solving an integral
equation. This model assumes that the crack faces are in contact over a length I (the contact
zone), that in addition there is no stress singularity at the inner boundary of the contact
region and that the stress is compressive in this contact zone. This last condition was
checked by considering the sign of the stress singularity at the crack tip. The resulting
equations were then evaluated numerically by Comninou and analytically by Atkinson and
Leppington (1983) and later by Gautesen and Dundurs (\987, 1988). In Atkinson (1982a, b)
bimaterial problems of semi-infinite and finite length cracks were analysed directly from
the governing equations using matched asymptotic expansions and Mellin transform tech
niques. The small size of the contact zone for tensile fracture and the infinity of solutions
for the contact zone length suggest that a numerical method is perhaps not the most accurate
method for this problem. That this problem has a unique solution for the largest contact
zone length is shown in Shield (1982).

In the analysis by Atkinson (1982a) the Comninou model was analysed and the
following conclusions were reached: the oscillatory singularity at the crack tip disappears
in the contact zone irrespective of the boundary conditions at the ends of the contact zone,
the boundary condition of non-singular normal stress at the beginning of the crack tip zone
leads to an equation for thc contact zone length with an infinity of solutions. This equation
is then evaluated to give the contact zone length consistent with only one contact zone. As
the mcthod is independent of particular boundary conditions in the contact zone, alternative
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contact zone models (Atkinson. 1977a) can be considered: indeed in Atkinson (1982a)
other models are considered and shown to have the same energy release rate as the
Comninou model.

Recently there has been renewed interest in interfacial phenomenon with the theory
being extended to anisotropic elastic (Qu and Bassani. 1989: Ni and Nemat-Nasser. 1991).
elastoplastic (Aravas and Sharma. 1991) and power-law (Champion and Atkinson. 1991)
materials. In linear elastic materials the analytical work has mainly centered on the integral
equation approach of Gautesen and Dundurs (1987). The theory can also be generalized
to dynamic interfacial fracture. e.g. Atkinson ( 1977b) and more recently Yang et £II. ( 1991 )
for anisotropic dynamic debonding.

The linear theories of isotropic thermoelasticity and poroelasticity were introduced
and discussed by Biot (1955. 1941). in particular it is shown there that the two theories in
the quasi-static limit are mathematically equivalent. The theories introduce a coupling
between the pore fluid (temperature) and the solid elastic skeleton (material). The equations
of thermoelasticity are usually uncoupled due to the small coupling parameter (Boley and
Wiener. 1960). This is not the case for poroclastic materials and the fully coupled eq uations
need to be solved. Here we wish to consider the effect of both the diffusion of porc fluid
(heat) and the presence of an interface. The quasistatic case considered here excludes the
existence of dynamic elfects and introduces time dependence into the otherwise time
independent elasticity equations through the diffusion process.

The plan of the paper is as follows: we use a technique similar to that of Atkinson and
Craster (1991) and Craster and Atkinson (1992) to solve the prohlem for an impulsively
loaded scmi-intinite crack hetwccn a porous elastic (or fully coupled thermoelastic) half
space and a rigid suhstrate. This solution is in many ways analogous to the "c1assical"'
elastic solution in that it predicts interpenetration of the crack faces. The diffusion of pore
fluid (or heat in thermoelasticity) results in a time dependent (compkx) stress intensity
factor. Both permeahle and impermeahle interfaces are considered: till: Comninou contact
zone model is then extemkd to cover these cases using a similar approach to that of
Atkinson (1982h).

The analogous steadily propagating fractures are also consitlered. the stress intensity
factors .IS a function of velocity arc derived and concise expn:ssions for the ncar crack tip
pore pressure fields are deri ved. These fields are dri yen by the dilatation and as a conseq uence
are oscillatory. This n:sult is of potential usc in the verilication of the usual assumption
that in the fracture of thermoelastic materials the governing equations can be uncoupled.

We follow the notation for porous elastic solids as introduced hy Rice and Cleary
(1976).

The stress a" is gi yen by

(9)

and the pore pressure p satisfies the linear relation:

( 10)

The governing equations. where we assume that there are no body forces or fluid sources
in the body. are as follows:

(a) The equilibrium equation.

a".; = O. (1 I)

(b) Darcy's law. which relates the mass flux to the gradient of the pore pressure. where it
is assumed that density fluctuations away from the reference density {Ill are small (analogous
to the Fourier law of heat conduction for thermoelastic media):
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(12)

and (c) the mass continuity equation (analogous to the entropy balance equation for
thermoelasticity) :

em
-:::- = -q/i'ct .

Here m is the mass of fluid per unit volume = 'Po and Po is a reference density.
The equations can be written for the thermoelastic case as

(13)

• 2 oe eo
l..oV 0 = fJTo-;;- + c.T'

ot lit
(14, 15)

and for the poroelastic case as

iJp , ae
- -KQV-p = -rxQ-.ot at (16, 17)

Both sets of equations have the same structure, the equations are characterized by five
independent constants: in the poroclastic case these are G, vas in an elastic material, vu ' B
to characterize the interaction between solid and fluid constituents and K which characterizes
the permeability of the material and the viscosity of the Ouid. Typical values for the material
parameters arc given in Rice and Cleary (1976), for instance values given there (for
Berea Sandstone) arc I'u =: OJ3, v =: 0.2, B =: 0.62, G =: 60 kbar, C (for water-saturated
sandstone) = 1.6 x 104 em s . 2, (for Westerly Granite) are Vu =0.34, v =0.25, B = 0.85,
G =: 150 kbar. c (for water-saturated) =: 0.22 em s - 2. The material properties of rocks vary
widely, particularly in their permeabilities. The pore space can, of course, be filled with
more viscous oils or gases, hence it is advantageous to keep the theory as general as possible.
The following correspondence between the thermoelastic and poroelastic variables can be
deduced

(18)

If we consider the coupled dilatation-diffusion equations (15) and (17) the coupling occurs
through the term rJ.(oe/oO (for the sandstone above rJ. = 0.79), although for thermoelasticity
the coupling can be much weaker, there may be cases where De/ot is large, particularly for
impulsive loadings. so we retain this term here.

In the case of saturated, incompressible constituents the variation of fluid volume
content is equivalent to the dilatation of the material. The equations above now reduce to
the simpler set:

, Ge.
GV-u;+ (I-iv) -P.• =O. (19,20)

These are the equations considered in the consolidation problems solved by McNamee and
Gibson (1960).

The full poroelastic equations can also be written in terms of ,. the variation of fluid
content per unit volume, where' is related to physically more relevant variables by the
relation' = ae+p/Q; (16) and (17) can now be written as

V2 ... a,
C \,=-.at (21.22)
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Similarly the thermoelastic equations could be written in terms of the entropy. These show
that the equations are characterized by the presence of a diffusion equation for the pore
fluid and the usual Navier elastic equation with a coupling term. Although (21) and (22)
appear superficially to be uncoupled it is important to realize that the boundary conditions
are always given in terms of the stress, displacements or pore pressure, the variation of fluid
content is not a usual boundary condition. The coupling is therefore just transferred to the
boundary conditions.

2. FORMULATION

In order to solve the coupled set of eqns (21) and (22) we introduce a general potential
representation which reduces to the McNamee and Gibson (1960) potentials in the soil
mechanics limit. Taking the divergence of (21) gives

(23)

hence a vector ~ can be defined such that

(24)

where t/I is harmonic and (j) is an arbitrary (non-zero) constant. This in turn implies, from
(21), th~lt

(25)

The notation ,i denotes differentiation with respect to Xj' Solutions are given by

Then (24) implies in general that

(26)

> (W+4(I-Vu»)
2GY(;v-¢+G (1-2v

u
) V'~ = ceQ" (27,28,29)

Choosing w = - 4( I - vu) red uces the problem to solving the set of equations considered
in Biot (1956). The completeness of this representation is shown by Verruijt (1969) :

V2~ = o. (30,31 )

For plane strain we take ~ = (0. t/I. 0) to get the following expressions for the variables of
interest:

of/> al/J
U 1 = ~,..- +y-,

ex ax

G ,
(= GV-f/>,

u

2GI'J ,
p = -V-f/>+2ccQ(I-2vu )l/J .•·,

C( .

CtP ol/J
Uz = ..- +y- -(3-4v')l/J,oy oy

(1n = 2G(yl/J., •. - ¢.« - 2( 1- vu)l/J .•·)·

(32)

(33,34)

(35,36)

(37,38)
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These representations can be compared to the displacement functions for soil mechanics
(the saturated. incompressible limit of the poroelastic theory) derived in McNamee and
Gibson (1960). Taking the saturation limit implies that' = e and Vu -+! and then by
defining

¢ = -E and ~ = (O.S,O), (39)

we recover the equations considered there. Note that here we have not used the rock
mechanics convention that compressive strains are positive. This convention was adopted
by McNamee and Gibson (1960) and the correspondence above is exact when this is taken
into account. The McNamee and Gibson potentials were limited to solving normal loading
problems. taking the soil mechanics limits before applying the potentials to specific problems
limits their use.

The above potentials are identical to the specialized tensile potentials introduced in
Atkinson and Craster (1991), if we take

¢ = ~U$+lfl and

The advantage of these potentials was the simplified structure on y = 0; the restriction was
that the undrained shear stress was zero along the x axis. This is the same restriction that
applies to the McNamee and Gibson potentials.

To proceed we assume all the field variables arc zero for t < 0 and Laplace transform
the governing e4uations (30) and (31). We also introduce the following scaling, which scales
the Laplace transform variable .I' out of the governing equations, placing the.l' dependence
in the boundary conditions:

(.)I'~
X=x ~ and (

.1')1 /2
Y=y - ,

c
(40)

(Jij(X, y,s) = Tij(X' Y,s) (DI/2, (x,y,s) = VeX, Y,s) (DI
/
2, (41)

u;(X,y,s)=U;(X,Y,s) and p(x,y,s) =P(X, Y,s) Gr2

, (42)

¢'(X, Y,s) = ¢(x,y,s) G)"2 and t/J'(X, Y,s) = t/J(x,y,s) (D1/2, (43)

The governing equations become

(44,45)

()~ (12
here V.~·t· =;;X····, + ;;.'y". Now, taking the Fourier transform with respect to X, i.e.

O' C'

(46)

gives from (44) and (45) the equations
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(47.4S)

whae r~ = ';2+ I.
The solutions to (47) and (48) which decay as r -+ x are

we take I~I = ~ ~:~ ~ 2 with both square roots real and positive for ~ real and positive. The
functions ~ ~ : have branch cuts from iO .. to :+ ix. r 2 is defined as

(50)

r. defined to be that branch of the square root with positive real part. can be factorized
into a product r +r _where r.+: = (~±i)I~. i.e. they have branch cuts from :+i to :+iX!.

The potentials (49) are then substi tuted into the potential representations; the constants
AI' A~. 8\ need to be deduced from the boundary conditions. The transformed rep
resentations arc given in Appendix 3.

J. PERMEABLE INTERFACE

3.1. SO/lItio"
For a fracture at the interl~lCe between a rigid substrate and a poroelastie material the

problem is not symmetric. so we cannot appeal to symmetry to fix some of the boundary
conditions. If we take the problem where the interface and the crack faces are permeable
then nn y = ()

fI = () Vx. (51 )

Ahead of the crack tip. the materials are bonded together. hence there is no displacement

111=0 and II~=O forx>O. (52)

and on the crack faces we take ,Ill intern,l1 loading which may be shear or tensile loading
or a combination of both. For mathematical convenience we take the loading to be

(53)

i.e. we are considcring a crack loaded with a prescribed internal stress. Physically this
corresponds to the dilrerence between an applied far lield loading and a resistive stress.
Although. clearly. these loadings arc idealized. more general loadings can be generated by
superposition. The notation r 1 and r ~ is used for the crack loadings to indicate mode I type
tensile loading and mode 2 type shear loading (in homogeneous media) respectively. Due
to the inseparability of the problem into purely tensile and shear problems. we expect the
ncar crack tip Iields to be characterized by a complex stress intensity factor and the leading
singularity to be oscillatory.

Laplace transforming the boundary conditions and scaling as above. the non-zero
boundary conditions become

Trr
- r,c l ~ .

TIl" = -;-," e·1 ", for X < O.
s -

(54)

and al = a(s/c) I 2 is the scaled value of a. Working in the scaled coordinate system is
convenient as the Laplace variable "s" is isolated in 0\. and it is therefore easier to analyse
the asymptotic behaviour.
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As we have mixed boundary conditions we define the following half-range Fourier
transforms. On Y = O. X > 0

(55.56)

and on Y == O. X < 0

and for the pore pressure on Y = 0

(57.58)

p =L: P(X. o. s) ei~X dX. (59)

Using thc above definitions the Fourier and Laplace transformed boundary conditions
become:

and D1(e. o. 05) = U_, D~(e, o. s) = V.. p(e. o. s) = o.
The notation D,(e. Y. 05) is used to denote the Fourier transform of U1(X. Y. s) with

respect to X. For the permeable interface we take P == 0 on the X axis which when used
with cqn (A39) gives a direct relation bctwecn A ~ and B I :

(61 )

Thc displacements and stresses on Y = 0 give the"following relations between the constants:

(62.63)

(64)

(65)

The above is a full matrix Wiener-Hopf equation which can be written as:

where we have defined 0(0 and Z(e) to be

(66)

O(e) = (-(nel+(3-4vu)"). (67.68)

By taking the combination T+ +ir+ (or alternatively we could take T+ -ir+) the matrix
problem can be reduced to the following functional equation:
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(69)

This conveniently reduces the problem to a more standard form; with ro and W(~) above
defined to be

We") I~I (I I (fl"1 "')).; = ~ - 2'1u +2r;(I-vu) ~ -.;- . (70,71 )

3.2. The Wiencr~Hopf technique
[n order to utilize the Wiener-HopI' technique, e.g. Noble (1958) we need to arrange

the "plus" and "minus" functions in such a way as to have a functional equation which
consists of a "minus" function equal to a "plus" function with a common region (or line)
of analyticity. First. it is necessary to split the functions W(~) and nco into functions
which are analytic and non-zero in the upper and lower complex ~ planes respectively. The
functional equation (69) is then split into the standard Wiener-HopI' form: a "plus"
function and a "minus" function. When these are equated they are by analytic continuation
equal to an analytic function which. in general, is then deduced using the extended form of
Liouville's theorem.

The product splits for rV(~) and n(~) arc performed in Appendix I. When these
functions arc split and the simple pole at ij", is subtracted out. the functional equation (69)
becomes

where reo is by analytic continuation an analytic function everywhere in the complex ~

plane. The asymptotic behaviour of W t(O and nt(~) are required as I~I -- 00. From
Appendix I. W+ - 0(~~'+12), W_ - 0(C W2 +m

)) where m = (lj27ti) log (3-4v) and

n t - l,n_ - -no·
We assume that as I~I--oo, U_+iV_ _ 0(C(n+1/2)) which implies that the dis-

placements arc O(r"- (2) as r -- O. For non-singular displacements (singular displacements
would be unphysical) we require n > L hence the stresses are O(r"- 3(2) and so T .. + ir .. 
O(~ ~("-121).

In the limit as I~ I -- T...', using the asymptotic results derived above, it is clear that L(~)
is bounded at intinity and tends to zero, and therefore from Liouville's theorem is identically
zero everywhere.

We can therefore deduce that

T t + ir t (73)

This gives us the transformed stress intensity factor. The complex power of the transform
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(m) is the same as for the elastic problem with drained coefficients. This implies that the
fluid diffusion does not alter the nature of the stress singularity. A similar result is found
in Atkinson and Craster (1991) and Craster and Atkinson (1992). In the problems con
sidered there the material was homogeneous so the usual square root singularity was
recovered; in bimaterial fracture the singularity also depends on the Poisson's ratio. It is
to be expected that the drained coefficients appear in m, as the interface is assumed to be
permeable so the crack tip is always effectively drained: an identical result occurs in the
impermeable case, Section 4.1. If the drained Poisson's ratio v = ! (an incompressible
material) the oscillations disappear. However. this case is of little interest here as ~. ~ ~'u ~

! and so we then recover an incompressible elastic solid.

3.3. Sear crack tip behat'iour
In order to identify correctly the crack tip intensity factors it is necessary to evaluate

the stress and pore pressure fields in the neighbourhood of the crack tip.
For the stress fields as r -- 0 in the neighbourhood of the crack tip, the stress field is

the well known elastic solution. Note here we have a rigid substrate so the usual solution
is somewhat simplified. From Williams (1959), the Airy stress function r/J for the elastic
material is given by

r/J = 9ie r'+ I (A sin (). + 1)8 + Bcos (). + 1)8+ Csin (). - 1)8+ D cos (). - 1)0), (74)

for 0 ~ 0 ~ 7t where). = n+ !-m, n integer or;, = n. A concise method for deducing the
constants is given in Hein and Erdogan (1971). Taking n = - I, which gives the finite
displacements and dominant singular stress field, it can be deduced using the analytic
function or Williams (1959) method that

where

I
I: = ., ·Iog (3 -4v),

_7t

(75)

(76)

K't'(t) and KT'(t) are the mode I and mode 2 stress intensity factors respectively for the
permeable interface; it is convenient to combine them and consider the complex stress
intensity factor KIPl(t) = K1fl(t) + iK'r(t) which is a function of time due to the diffusion
process. The superscript (p) is used to distinguish these stress intensity factors from the
impameable cases [with superscript (im») derived in Section 5.

Laplace transforming (17) to get

(77)

we can deduce that in the neighbourhood of the crack tip (r -. 0) the pore pressure is
governed by

which for the permeable interface has to leading order (Le. as r -- 0) the solution

p = K1r(s)rsinO forO ~ e~ 7t,

i.e. a simple eigensolution. The dilatation (to leading order) is

(78)

(79)
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(I-2v) (I-2v)
e - 2G (0'.... +0'.'..) = G (<1>(:)+<1>*(=*». (80)

the * being used to denote the complex conjugate. We therefore find a particular solution
of I\V2p = N which satisfies the boundary conditions.

In the above we have used the complex variable notation as in Muskhelishvili (1953)

",,'

<1>(=) = e-~<=- I!-i< L an:\

n-O

the only term we are interested in here is that with n =O. then taking

K*
aO = 2(2n:) li2cosh (n:c) •

leads to

(81)

(82)

This st..'Cond term is driven by the dilatation and consequently is also oscillatory. Note also
that some care is required in interpreting the above result for the pore pressure. The
similarity variable for the diffusion equation is r2/1 and our method is an expansion in small
r for I fixed: there is a non-uniform limiting process if the limit as I -> 0 is now taken. Such
a complication does not arise in the expressions for the stress intensity factors.

It is our aim to find the Laplace transformed stress intensity factors K(~l(S) =
K(f'(s) + iKlj"(s), K""(s) and then invert the Laplace transforms. e.g. (92) and (93) numeri
cally.

4. IMPERMEABLE INTERFACE

4.1. Solution
If the interface is now taken to be impermeable. the above analysis can be repeated;

the only boundary condition which changes is (51). The boundary condition on the pore
pressure becomes

cp
- = 0 forallxony = O.oy (84)

We use the general potential representations derived in Section 2 and the formulae of
Appendix 3 to give us directly that

(85)

The other equations relating the constants A I. A 2 and B I. e.g. (62)-(65) remain unchanged.
Solution of the resulting matrix Wiener-Hopf equation follows in an identical fashion
leading to the following functional equation

(86)

We use overbars on the functions to denote those which correspond to the impermeable
interface. The functions !l(e) and W(e) are given by
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(87,88)

The product splits for these functions are sketched in Appendix I. We can subtract out the
simple pole at i,'al and using the edge conditions and Liouville's theorem on (86) as before
[(I (7~)l gives

Using the asymptotic behaviour of the functions givcs thc following expression for the near
crack tip bchavi\.lur of the stress fields

(90)

The expn:ssion is similar to the pcrrncablc rcsult (73), the only dil1crence is in the functions
Jf', n. In the previous works on diffusive elastic fr;lcture Craster and Atkinson (llJY2) and
Atkinson and ('raster (llJlJ I) the stress intensity factors for fracture in undamaged
materials were found. In the cases where the fradure plane was either completely permeable
or impermeable, the only dil1crem:e in the stress intensity factors was in the split functions,
i.e. N ,(illl,) replacing iii .. (illl l ). The functions N .. and iii .. reflected the interaction of the
applied stress with the pore pressure boundary condition on the crack faces, hence they
also occurred naturally in the mixed pore pressure boundary condition cases. In the cases
with permeable/impermeable crack faces (N .. !iii .. occur) an analogous correspondence may
occur in the interfacial mixed pon: pressure boundary condition cases, These cases arc
briefly investigated in Appendix 4.

The ncar erack tip fields can be evaluated in a similar manner to that in Section 3.3.
In the impermeable case the clastic field is once again that identified in Section 3.3. The
pore pressure field at the crack tip is governed by V~fi = O. The asymptotic behaviour of
the pore pressure can thus be identified as

fi - p()(.~) + "(;'"'(s)rcos O. (9\ )

5. CRACK TIP FIELDS

Inverting the asymptotic transform results we can match these with the appropriate
asymptotic results from Sections 3.3 and 4.2 to identify the intensity factors, e.g. (75). In
the neighbourhood of the crack tip we can invert the Fourier transformed stress intensity
factors (73) and (90) (i.e. inverting in space) using the Tauberian results in Appendix 2 and
recalling the scaling introduced earlier, we find from (75) that the purely Laplace trans
formed stress intensity factors arc given by
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(92)

(93)

the superscripts (p) and (im) identifying the permeable and impermeable stress intensity
factors respectively. For comparison with previous works on interfacial fracture these
results are written in terms of E = im; by noting that }'O + iC)i'd - ic) = 7t/cosh (1t'c) from
Abramowitz and Stegun (1970) these results can be put in a more standard form, The
functions J+(~), j+(~) are defined in Appendix I. }'(.:) is the gamma function as defIned in
Appendix 2. In particular we can deduce that the complex stress intensity in the clastic case
for the loadings we have chosen is given by

(94)

Using a non-dimensional time scale t' = Ic/a 2 we can invert the Laplace transformed
complex stress intensity factors (92), (93) numerically for all times. We take

I/! II:

K(f,j(t') = (27t) 1/2(r 1+ ir 2) a. l(t'),
Y(II: + ~) . (95)

with the time dependent scaling factor given by the following inverse Laplace transform,

n (--~)
f(t') = ~ rq+l'J -~j) c'r d.I' for ~l(q) > O.

_m j,'<'J{j,)
(96)

Graphs of the real and imaginary parts of f(t') and the modulus (using the non-dimensional
time scale t' = 1('/(12, for v = 0.2, vu = 0.4) are shown in Figs 1-3 respectively. The graphs
also contain the equivalent results for the impermeable case shown as a dashed line; in
Figure 3 a small time asymptote is also shown. This small time asymptote is deduced using
an heuristic argument based on the energy release rate, see below. The time dependent
scaling function (96) and its impermeable analogue contain all the time dependence and
illustrate how the classical elastic result is altered by difrusion.

The Laplace inversion (96) is performed numerically using an adaptation of the Talbot
(1979) algorithm which is briefly described in Appendix 5. An alternative method is to
collapse the inversion integral in Laplace transform space around the branch cut along the
negative real axis and evaluate the resulting definite integrals numerically. The two methods
produce results which agree to within I%, although the inversion becomes particularly
difficult for short time intervals due to the extremely awkward behaviour of the integrand.
In particular the function J+ (e) does not tend to a limit independent of the argument of e
(although it is analytic) as e-+ O. The behaviour of J + (e) is discussed in some detail in
Appendix 1.

For large times t' -+ 00, S -+ 0; using the asymptotic results from Appendix 1we recover
the elastic result suggesting that the long term behaviour is essentially elastic.
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Real part versus time
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Fig. I. The real part of the complex scaling factor versus a non-uimensionaltime scale for v = 0.2.
\'u = 0.4.

We can check the above results using the same physical ,Irgument based on the energy
rekase rate as in Craster and Atkinson (1992). suitably adjusted for the interfacial problem.
We visualize the crack tip as a drained clastic inclusion (with Poisson's ratio v) in an
undrained dastic material (with Poisson's ratio vu)' We can analyse this using the energy
rdease rate. Consider an inclusion with shear modulus Il" Poisson's ratio Vi embedded in a
material with shear modulus Iln. Poisson's ratio v" bonded to a rigid substrate, e.g. Fig. 4.
Under conditions of plane strain, we dctine K,. K" to be the complex stress intensity factors
associated with the inner and outer materials respectively. Then, provided the inclusion is
sullieiently small, the energy release rate (; is given as

Imaginary part venus rime
0.4,----...,.----,----.------.------.----.-------,

0.35

0.3

0:::- 0.25...
o

permeable

••••••~permeable

............
..........

.............

..............

..............
ol.:------'---.......---.......----'----.:::i:.::..=.=..-.~.."".~-----J
10" 10~ 10-] 10-2 10-1 100 10' 102

0.2

0.1

0.05

5
c.

~
.5
~ 0.105
.§

non-<limensional time scale t'

Fig. 2. The imaginary part of the complex scaling factor versus a non-dimensional time scale for
y = 0.2. Yu = 0.4.

SAS :!9:12-8
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Modulus versus time
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(97)

Here 1:.. , f., are given by (76) with the outer and inner Poisson's ratios respectively. The
energy release rate is calculated as the combination of the work done by the mode I and
mode 2 stress intensity l~lctors, e.g. Malyshev and Salganik (1965). In physical terms, for
small times the local energy release rate at the crack tip must be the same as the energy
release rate seen in the far field. We can make this rigorous by using an invariant integral
(Atkinson and Craster, (992). From (97) we lind

(
3-4V )(I-v) It)U

IKiI = .. '!.-'- IK,,I.
(3 - 41'.)( I - v,,) jt"

Letting I', = V, I'.. = VU , jt, = Po = G, taking K, = KIP' or Klllni and

UNDRAINED POROUS ELASTIC MATERIAL

Fig. 4. For short time intervals the crack tip can be visualized as a drained inclusion embedded in
an undrained material.

(98)
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we can deduce. for both the penneable and impenneable cases, in the small time limit

1.. ,'1

(99)

, (3-4Vu)(I-V»)I/Z(COSh(1tI;u»)I/Z ,
1/(/ )1-+ (3 -4v)( I - vu) cosh (m:) H(t). (100)

with f;, = 1/27t log (3 -4~'u)' The result (100) was checked against the numerical results and
although the small time limit is difficult to evaluate, an extremely good agreement was
achieved; this asymptotic result is shown as the straight line in Fig. 3. The energy release
rates as functions of t' can also be evaluated from (97)

(101)

these are shown (normalized by dividing through by the elastic energy release rate for a
homogeneous elastic solid. i.e. Go = 21(r 1+ irzWa(1- v)/4G) in Fig. 5. Also shown there
for comparison are the normalized energy release rates for the homogeneous (unmixed)
cases using the stress intensity factors given in eqns (85), (88) of Craster and Atkinson
(1992). As t' -+ 0 the curves for the impermeable and permeable cases tend to the same
limit. this is because in the unmixed cases the small time limit for the stress intensity factors
arc identical. This can be shown by considering the inclusion argument above. It can be
clearly seen that for the values we have taken (v = 0.2, Vu = 0.4), the interfacial energy
release rate results for both permeable and impermeable interfaces are, for most time
intervals less than the equivalent result for the homogeneous material. For very small t' the
situation reverses with more energy release rate for the interfacial cases, in this limit the
differences are small.

0.7 '-:-__--'-: "-:--__-:'"::--_---:'-:-__-:":-__---'':-__...J

10.5 10~ 10-] 10-1 10-1 100 10. 101

Fig. 5. The energy release rates (normalized as in the tellt) as functions of I' = fela 2 for Poisson's
ratios v = 0.2, v. = 0.4 the curves correspond to (a) the permeable homogeneous, (b) the permeable
interfacial. (c) the impermeable homogeneous and (d) the impermeable interfacial cases respectively.
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6. CONTACT ZONE

We now proceed to consider a Comninou (1977) contact zone model. In this section
we will deal with the permeable interface only; the impermeable results can be deduced in
a similar manner. The contact zone model corrects for the interpenetration of the crack
faces; the analysis follows the analytical approach for linear elastic interfacial fracture of
Atkinson (1982a,b).

Note we here work entirely in the Laplace transform domain, thereby removing the
time dependence explicitly from the equations.

Considering the near crack tip displacement fields, for the permeable case we can invert
the asymptotic result for the displacements from (72) to get

(102)

This reduces to the elastic case in the appropriate limits. We find the usual situation for
interfacial fracture, the jump in normal displacement across the crack changes sign infinitely
often leading to the non-physical interpenetration of the crack faces. Comninou (1977)
suggests that this can be corrected by assuming that the crack faces remain in contact over
this region.

We let II denote the length of the contact zone, and use polar coordinates centered on
the crack tip, with () = 0 being the line ahead of the crack, i.e. Fig. 6. Then the boundary
conditions hecome, (where we remind the reader that ti2 = iiu cos 0 on 0 = 0, It) on 0 = It:

iiu = 0 for 0 < r < /" _ 'I -'fa .. ,
UUU = - ._- e lOr I < r < 00,

of
(103,104)

arlJ = - '2 e -'fa forO < r < 00,
S

and on 0 = 0 the same conditions as before (Section 3.1),

ii, = iio = 0,

(105)

(106)

and on 0 = 0 and It, for the permeable interface, p = O.
The length scale of the loading, a, is assumed greater than the contact zone length, 'I'

This length, 'I, for the elastic problem is determined in Comninou (1977) by determining
the loading length scale a such that O'oolo_n has no stress singularity at the inner boundary
of the contact region and is compressive for 0 < /, < a. The contact zone length for

DIFFUSIVE ELASTIC MATERIAL

C,II,vII ,D.1t

I,
.. .
CQ\ITACT ZONE

RIGID SUBSTRATE

Fig. 6. The coordinate system for the contact zone.
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particular materials is determined in an inverse manner; the length is specified and then the
ratios that the elastic constants must have is calculated.

These conditions are not assumed a priori here [or in Atkinson (1982a. b)]. This is a
considerable advantage over the numerical methods.

Now let the solution found earlier in our Wiener-Hopf analysis be the outer solution
[which we shall denote using a superscript (0)]. This will be valid for distances ~ much
greater than 110 the contact zone length. from the crack tip at r = O. This earlier "outer"
solution is clearly non-physical close to the crack due to the interpenetrating property
previously referred to. Therefore we need to correct for this behaviour. We recall here that
in this section we are dealing with the permeable case. To proceed we write

I-I. = u-II) + ii(OI a = a i ') + a(O) p- = p-ii) +p-iO)
, I I' I) ') IJ ' , (107)

where these outer solutions (0) are the solutions to the problem posed in Section 3.1. The
boundary conditions for the "inner" problem [denoted by a superscript (i)] become on
e= n::

a~ = 0 for 0 < r < 00.

(108.109.110)

Denning new coordinates (R. 0) by

(III)

i.e. scaling on the length scale of the contact zone we therefore rescale the displacement.
stress and pore pressure fields according to

( 112)

The Laplace transformed diffusion equation becomes

(113)

where the differentiation is now with respect to (R, 8). In the limit as II .... 0 the pore
pressure separates out from the dilatation. Hence the governing equations become

(114.115)

From the asymptotic behaviour of the pore pressure (Section 3.3); P - K<rI(s)Rn/ 1 sin 8.
Therefore to leading order the pore pressure is zero. Hence the situation is analogous to
that considered in Atkinson (1982a. b) therefore we just sketch the solution here.

Applying this change of variable (III) and the scalings (112) we can deduce that on
O=n:

too = 0 for I < R < 00, (116,117)

and on () = 0

From (102)

fRO = 0 for 0 < R < 00.

DtI = DR = O.

(118)

( 119)



R. V. CRASTER and C. ATKI:"SON

The scaled displacements satisfy. to leading order. the governing equation

, _ G_
GV-U + _.-- E = O.

I (I - 21') ./ (121 )

One natural method for solving bimaterial problems is to use the Mellin transform for the
full poroelastic equations. This would lead to a ditTerential ditTerence equation and so it is
easier. for the full problem. to use the Fourier transform as in Section 3.1. However. on
the scale of the contact zone. the pore pressure equation separates (to leading order) and
we are left with the usual Navier equation (with drained Poisson's ratio). We now solve
this problem using the Mellin transform which is detlned as

and the inversion formula

t\ (If) = AIU, If} = I' i. (R)R" I d R.
II

I f"I"i,( R) =., . t\(If) R 'I dll.
_ITI I I I

(122)

( 123)

where c is chosen such that R' I i,(r) is ahsolutely integrahle on (0, :.c). We proceed hy
ddining the following transforms (which arc unknown functions of If):

iH(R~f;",)loa.= P, = I' R'P I f;/I/(R. 0) dR.
II

( 124)

This function is analytic in some right half plane for ~l(lf) > Ifl where Ifl depends on the
nature of fUll as R -. 0 and

( 125)

which is analytic in some left half plane for ~l(lf) < Ifll where Ifll depends on the behaviour
of aD%R as R -. ,'X,. The following functional equation can be deduced

(
I (E E*))T(q) G ('I) +., ( 1 .) + ( 1') = - F + ('I),
- If + 2+ 1/; 'I + 2- 1/:

with the • denoting the complex conjugate and

(
(1 +(3-4\')~))G cos (2qrr) + . _ _ .

2(3 -41')

T(q) = -~~--(I-_ \.) sin (2lfrr)

( 126)

( 127)

This is identical to the functional equation deduced in Atkinson (1982a. b) with appropriate
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changes made for the rigid boundary and the particular loading considered here and E in
(126) defined as

Splitting T('1) into a product of analytic functions we find T('1) = T + T _ with

2nG 2 - 2qy(2q +3)
T+ ('1) = . J ( . J)'4(I-v) y(q-If;+ 2)Y '1+ 16 + 2

_2 2q + 2y( -2'1- 2)
L(q) =. ·1 -'--1 .

y(If.-'1 - 2)Y( -'1-U:- 2)

( 128)

( 129)

( 130)

Then. as in Atkinson (1982b), the functional equation (126) can be rearranged as the
following functional equation:

The asymptotic properties of T t can be used together with Liouvillc's thcorem to dcduce
that I(q) = O.

From Atkinson (1982a) thc strcsses ahcad of the fracture can be evaluated from the
Mellin transform

(132)

and the stress in the contact zone from (124). Hcnce we can deduce on 0 = n, R « 1

t._ = _ (!--2,) ll·U) (C:)112 ~n( i(t,+i!2) (!.:-t).
= 2(I-v) S R ( i ) 4a} (133)

J+ - yO+ie)
at

Similarly we can deduce a result [cf. (2.26) of Atkinson (1982b) from (132)] for the stresses
on 0 = 0 from which it would initially appear that the stresses are still oscillatory. However,
from (107), the oscillatory parts cancel out. If we now consider the stress in the contact
zone (133) we have to determine the length over which it remains compressive and, for the
Comninou model, for which tile is bounded at R = 1. We can translate these results into
the notation of Atkinson (1982b) by taking
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(134)

then the condition becomes

( 135)

It is clear from this that there are an infinity of contact zones lengths, however only one
will satisfy the subsidiary condition that the stress be compressive along the contact zone.
The above is then solved by

( 4(/) (P )/' , I' , I II'sin dog II = 2 - I:Q (Q- + P-)-(f.- +~) -.

(136)

(137)

In the case of pure tension. i.e. r" = 0, from the previous sections, it is clear that for small
times the diffusion process induces a shear component, this has the effect of lengthening
the cont~lct zone. As in the clastic case the above relations can be used with the results from
Atkinson (1982a,b) to show that the energy release rate for this model is identical to that
obtained by considering the case with the oscillatory singularity as in Section 5.

The above matched asymptotic expansions are more accurate provided the contact
zone length is small, for this we re4uire that the contact zone is due to the interpenetration
effect and not due to a purdy shear loading. A shear loading acts to close the crack the
contact zones are due to the loading, and the contact zone length may then be large. Hence
our results above arc valid, by analogy with Atkinson (1982b), when P > Q this is true in
the case of pure tension.

Due to the shear component induced by diffusion we can expect a larger contact zone
length to be induced. We can sec this from the above, taking v = 0.2 and Vu = 0.4 we plot
Ilia as a function of the non-dimensional time scale t' in Fig. 7. The complex gamma
function is evaluated numerically using an algorithm described in Lanczos (1964). From
this we see that initially the contact zone size is large. This then monotonically reduces to
a standard elastic result.

In the impermeable case, the asymptotic behaviour of the pore pressure is that P 
I I"Po(s) and hence to leading order this does not affect the above analysis, so we can deduce
that

( 138)

7. STEADILY PROPAGATING FRACTURE

As in earlier papers by Craster and Atkinson (1992) and Atkinson and Craster (1991)
the problem ofsteadily propagating fracture can be considered. This problem is considerably
simpler as the explicit time dependence is removed. If the crack propagates at a steady
velocity V then the field variables have the dependence on x, y. l,q = g(x- VI, y) with g
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representing allY field variable, i.e. we consider a steadily translating coordin.tte system.
Hence the explicit time dependence is removed as c!/Dt = - V(cJ/Dx). The potential equations
(30) and (31) become

(139,140)

We can remove the explicit velocity dependence by adopting the following scaling

v
X= -x,

c
v

y= y,
c

v
U,(X, Y) =··",(x, .1'),

c
(141 )

(142)

and leaving the other field variables unchanged. For the interfacial problem, a similar
analysis to that performed above can be repeated. The details of this we shall omit here
and merely quote the results. We take a stress loading similar to that adopted in the
impulsive case which now moves with the crack and decays as X -+ - 00, i.e.

(143)

where a I = a Vic is a non-dimensional length scale. If the boundary is permeable the complex
stress intensity factor as in (75) is

SAS ~9: 12-<:
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and if it is impenneable
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( 144)

( 145)

with the elastic result (with drained parameters) as

( 146)

The functions X. i. w. (u and nu are defined in Appendix I. Briefly. the oscillatory behaviour
is unchanged and the complex power depends on the drained Poisson's ratio as in (76). The
velocity dependent stress intensity scaling functions e.g.

arc plotted against €II for v = 0.3. VII = 0.4 in Figs g·IO. It is interesting to note how the
stress intensity factors alter for large (I,; in this limit the dominant behaviour comes from
w .. (i/a,) and w.(i/(I,), The real and imagimlry parts behave as if the material is clastic for
small values of a ,. and then the effect of the fluid diffusion becomes significant. It is also

Sleady case: Real part vs a I

0.95

...
0
0 0.9
~

"";§...
~

0.85...
0

5
Q,

~ 0.8

'"
0.75

0.7
10-6 10-]

permeable

im,,~b'" ••••••••••••.•••••••..

10]

al

Fig. ll. The real part of the complex scaling factor versus {/ I for v = 0.2. vu = 0.4.
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interesting to note that the modulus of the scaling function tends to a constant. Numerically
it appears (sec Fig. R) that

[n particular this implies.

I ( 1- v)(3 -4VU» (COSh (m;.»)'12
IKIP (V)I -- (3"':'4~)(1---=-~) 'cosh-(m:f IK,I,

( 147)

(148)

with Ke now the clastic stress intensity factor with undrained coefficients, in terms of the

Steady case: Modulus liS al

0.98

impermeable,

0.88 .

asymptote

0.86

".....__.;;:.,..,.----

10') 10) 106 109 1011 lOIS

al

Fig. 10. The imaginary part of the complex scaling factor versus 0, for II = 0.2. ". = 0.4.
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matching type arguments in Appendix E of Craster and Atkinson (1992) and the stress
intensity factor for the undrained outer material. There is an identical result for the imper
meable case. This is the square of the result predicted by the energy release rate argument
used in Section 5 for the impulsive cases. The limit of large a I corresponds to large velocities
(where dynamic effects may alter the results) or to cases where the consolidation coefficient
is small. e.g. clays. This limit is reminiscent of the steady cases considered in Craster and
Atkinson (1992) and Atkinson and Craster (1991) where the infinite velocity limit of the
steady stress intensity factors was the square of the result predicted using the energy release
rate. In the steady case this was rationalized by Rice and Simons (1976) using a heuristic
argument based on comparing the near tip displacement fields in the drained and undrained
cases. Such a heuristic argument does not appear to work here. although the result that
(147) is the square of the result predicted by the energy release rate. as in the previous
steady cases. does suggest that this is always the case. We can tind no way to conclusively
prove this.

For comparison with previous results we consider the energy release rate for a steadily
propagating shear crack on an impermeable plane in an otherwise homogeneous material
and compare this with the energy release rate for a steadily propagating crack on an
impermeable interface. From Craster and Atkinson (1992) we take the mode 2 stress
intensity factor KIl ( V) for the semi-infinite impermeable crackt in a homogeneous medium
subjected to a moving shear loading an = -Irl eX.,. with r = 'I +ir", then

,/2l r lal "(;;- ~)(I + ~-)I"
al

KIl ( V) = --- -------------.-- ---.

((
I )( I)1 . I);;- . 1+ +.

al til a;"1

(149)

The energy release ratet. the energy required per unit advanl:e of thl: I:ral:k. is given (in the
region y > 0) oy

( 150)

We plot (j( V) divided by the energy release rate for an identil:ally loaded elastic solid
[replal:e KIl ( V) oy /2ltla l

1 in (150)] aSl:tIrve d in Fig. II for I' = 0.12. I'u = (>.3 I.
In the (impermeable) interl~lcial case

_ IKllll(V) I~(3 - 4\')
C1Hn)( V) =

16C(I-\')

With K11I1l1( V) as delined in (145) above. we plot the energy release rate for

4CC'II11 I ( V)

ij(~~+i~;Yf~~;Ti':'1').

(151 )

( 152)

i.e. comparing the interfacial energy release rate against the equivalently loaded clastic
material, in Fig. II as curve c for the same Poisson's ratios as in the homogeneous case
above. The flow of energy. for small al' into the crack tip is less for the interface case,
suggesting that the velocity of propagation will be smaller for this debonding; for larger (/1

t We note that this stress intensity factor is the same as that for the shear fracture on and impermeable plane
in an undamaged homogeneous material and for mode I (Iensile) fracture where the crack faces arc impermeable.
it appears that for steadily propagating fracture in homogeneous malerials there are only lWO different stress
intensity factors depending upon the pore pressure boundary conditions. i.e. permeable or impermeable. on the
crack faces.

: The authors apologize for the notation. here G is Ihe shear modulus and (;( V) is the energy release rale.
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Fig. 1t. The energy rde<lsc r<ltes (norm<llilcd as in the text) as functions of (I, (lV!c for Poisson's
r<ltios v = 0.12. "n = (1.3 I the curves correspond to (al the perme<lblc interf<lce. (b) perme<lble
interface (homogeneous c<lsc). (c) the impermeable interface and (d) impermeable interf<lcc (homo-

gencous case).

this silu~llion reverses. There is little dilTerence between lhe various cases in this limit. The
curves b. a in Fig. I I an: the e4uivalent normalized energy release rates for the permeable
interl~lces. As can be seen the permeable cases h~lve higher v~l1ues, the impermeable interfacc
traps the l1uid in lhe upper half plane leading to 1~lrger energy dissipation. The smaller
cnergy release rates suggest that less energy is available for fracture. a similar result for the
homogeneous c~lses is found in Rudnicki and Koutsibelas (1991). We note that as v - vu -+

! the interfacial and homogeneous cncrgy release rates tend to each other. The X axis of
Fig. II contains the range of a I thought to apply for fault creep events.

From the contact zone analysis of Section 6 we can deduce that for larger velocities
we would expect a large contact zone, this may also help to retard the crack velocity if this
is due to a large shear component. For the complex stress intensity factor, which is always
inseparable into just tensile and shear components the inseparability becomes more marked.
The large imaginary component will alter the phase of the complex stress intensity factor,
although it is physically more interesting to consider the energy release rates as above. The
diffusion of the fluid through the material induces stresses which have a large effect on the
near crack tip fields. In the steadily propagating cases considered in Atkinson and Craster
(1991) and Craster and Atkinson (1992) for homogeneous materials the analytical solu
tions showed a wake of pore pressure behind the crack tip it is the dissipation of energy
caused by the diffusion process which tends to retard velocity of the fracture. The wake
was more pronounced in the cases with impermeable crack faces as the fluid could not pass
through the crack walls. ft is clear from Figs 8-10 that the influcnce of clilTusion is to induce
a significant change in scaling f"ctors.

7.1. Crack tip fie/elf
In the case of steadily propagating fracture the pore pressure diffusion equation (17)

becomes

, -Vcp ~Vce
'V'p =-- - - - -,

KQ ex K ex (153)

and the elastic Navicr cquation with the coupling tcrm (16) remains unaltered. As in
Atkinson and Craster (1991) and Craster and Atkinson (1992) we can deduce simple near
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crack tip fields. To leading order the stresses are the classical elastic solution with velocity
dependent stress intensity factors. The near crack tip pore pressure can be found from

, -exV ce
V'p=---,

1\ ex (154)

and an eigensolution of V;p = 0 which together satisfy the appropriate pore pressure
boundary condition.

In the permeable case we find that

( 155)

In the impermeable case

( 156)

In both cases the pore pressure is clearly oscillatory. This raises interesting e:<perimental
possibilities. It is often thought that the mathematically equivalcntthermoelastic equations
uncouple. This assumption is implicit in most of the work on fracture in thermoelastic
materials. e.g. Kuo (1990). This could be checked. for instance using the experimental work
of Zehnder and Rosakis (1991) on the temperature distribution of dynamically propagating
cr41cks in steel. In the mode 1 tensile case (for a homogeneous material) that they consider.
although performed at significantly larger velocities for which our theory here is necessarily
valid (because of the neglect of inertia), the temperature contours are quantitatively similar
to those in Atkinson and Craster (1991). The oscillatory behaviour for the pore pressure
we have shown above is driven by the dilatation. and so will only be present if the equations
are fully eoupled. This would provide an interesting and conclusive test on the validity or
otherwise of the uncoupling assumption.

So far in this paper we have not discussed problems in which the pore pressure
conditions are mixed. i.e. permeable crack faces and interface ahead of the crack imper
meable. The problem in the impulsive case is outlined in Appendix 4; we can. however.
derive some asymptotic results for the near crack tip fields. As in the unmixed cases, the
stresses will be the usual elastic solution with a velocity dependent stress intensity factor
and the pore pressure will be given in the same manner as above. as

( 157)

This first term is an eigensolution of V 2p = 0 and the second term a particular solution of
(154). The coefficients K 3( V) and K( V) = K I(V) + iK;( V) would need to be ded uced from
the solution of a matrix Wiener-HopI' equation (see Appendix 4). We note that these
solutions will also be the leading order solutions for the crack tip fields of an arbitrarily
moving crack.

8. CONCLUSION

The problem of interfacial fracture between a linear diffusive elastic medium and a
rigid substrate has been tackled analytically using the Wiener-HopI' technique. The complex
time dependent stress intensity factors are evaluated in Laplace transform space and inverted
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both analytically for small times and numerically for all times. This complex stress intensity
factor characterizes the near crack tip stress fields. The main results are:

• The time dependent complex stress intensity factors for an impulsively loaded semi
infinite crack in the permeable (92) and impermeable (93) interface cases are deduced;
the analytic results are given in Laplace transform space. These results are then inverted
numerically and checked in the small time limit using a physical argument based on the
energy release rate.

• The small time behaviour of the intensity factors, e.g. Figs 1-3 show that the diffusion
can be expected to play an important role. For example, the complex stress intensity
factor is multiplied by a time dependent factor which has a large imaginary component.
The energy release rates for the two different interfaces are compared with the equivalent
homogeneous cases.

• A contact zone analysis is performed using the methods outlined in Atkinson (1982a,b).
The analysis assumes that the ratio of the contact zone length to the loading length is much
smaller than unity, hence the results will not be so accurate for asymmetric problems. The
effect of the pore pressure/temperature diffusion on the contact zone length is quantified.

The case ofa steadily propagating, permeable or impermeable, semi-infinite interfacial
fracture is also considered here;

• The velocity dependent complex stress intensity factors (144) and (145) are identified.
For large velocities, or materials with small consolidation coefficients, the intensity factors
arc again significantly altered by the diffusion process. and it can be expected to play an
important role. For example, the imaginary component of the velocity dependent factor
which multiplies the stress intensity factor becomes large, which alters the character of
the near crack tip stress fields. The energy release rates for the interfacial and the
e4uivalcntly loaded homogeneous cases ,Ire plotted.

• Simple near crack tip pore pressure fields (155)-( 157) are deduced which are oscillatory
in ch'lracter. The oscillations will only occur for the fully coupled e4uations. The result
in (157) is dedUl:ed for the fully mixed problem, permeable crack faces and impermeable
ahead, see Appendix 4. This could form the basis for experimental work to verify or
otherwise the uncoupling of the thermoelastic equations.

The stress intensity factors as functions of (' = teld2 (orin the steady cases ofa l = a VIe)
depend only on the material parameters Y, Yu (the drained and undrained Poisson's ratios).
The coupling plays an important role for all materials as either (' - 0 (or 0 1 - 00). As y-.

Yu the etlect of the coupling decreases.
These analytic results arc all derived using an idealised loading. However, it is possible

to superimpose the loadings to represent more general situations. These analytic results
provide a basis upon which future analytical, numerical and experimental studies can be
based.
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APPENDIX I: PRODUCT SPLITS

We split the function W(~). appearing in (69). following the analysis in some detail and then briefly outline
the main results for the other functions in the te~l.

To perform the product split for W(~). defined as

(AI)

we note that W(.;) has no zeros in the cut plane. Then for convenience we consider the function J(~) where



then as
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(A2)

. I
1(~) - 2(\ -v) = 1 0 and as ,- -=c.

• _1ouo(3-4v)
1(~)-e 2(I-v)'

To perform the product split for 1(;) = 1.(;)1_(;) and then deduce W. and W _. we consider

(A3)

Implicit in this splitting procedure. is. that for the convergence of the contour integrals (A5). 1(,) must tend to
1" as 1;1- x. Therefore we deduce that

1
m = ----,log(3-4v).

2It!

The usual ClUchy representations for a product split arc

(1(:»)
log - 110g1+(0I .. J:' tllJ Jo

± -- d: = J (0 .
27[i J.. "~ :-, 10g ( J;;-)

(M)

(A5)

with d real and positive. d then tends to lero. The function log (1(, )/10 ) has branch cuts from iO. to i'Xl and from
in to - i XJ which can he chl'<:ked numerically by following log (1(0/10 ) along either side of the im:lginary axis.
i.e. , = n, + I'i for -or} .,;; I' .,;; ."{;.

As 1(, l/Jo - I +O( I/~ ') whcn I' I - -x.' thccontrilmtion to the integral frornclosing the contour of integration
:Iboul an arc at inlinity is lero. Dclinin/;

U to he the argument of:. and :, as

(
1-(~+yl_y(yl-I) Ill))

2". 2ti(\ - v.)

we collapse the path of integration about the branch cut in the upper half plane to give:

log (1 - ('») =~(I' log «3 -.4v),:-) dy+ fXl log «3-.4v)':1) d ).
10 27[1 0 (y+I,) J, (y+I,) Y

(A6)

(A7)

(AS)

the - denoting the complex conjugate. and although initially defined in the lower half plane. is by analytic
continuation a function valid in the whole complex plane except for the branch cut from iO. to ioo.

Similarly 1. can be evaluated by collapsing the integral around the lower branch cut

!' '-~"(Il log«3-4v):)d' f,~ log «3-4v):J )
ilgl,(,)-,. (. "»+ ('~) dy._7[1" .I-I~ I y-I~

(A9)

although initially defined in the upper half plane the function can be analytically continued to define a function
valid everywhere except for the branch cut from iO_ to - ioo. Using (A9 and AS) we can therefore deduce that

(AIO)

This can now be checked numerically with (A2) for real,.
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As ~ - 0, then 1 _ l u - 1~ therefore we can deduce that

(
' I V)"

11.(0,)1 = I-v, (All)

which are useful checks on (/\9).
In the limit as ,) - 0 the integrals can be rescaled and it can be shown that

(
I_V)'Z (i ( I) (3-4\'))1. (.5) = --- exp -- log 1... -~ log -- ,
1-\', ·k ,)- 3-·h,

(AI2)

with a similar expression for 1 _(,;). This oscillatory behaviour as J tends to 0 makes the evaluation of the inverse
Laplace transform (92) a difficult process, Hence

1

and W.=I.~~'·~

Note that in the elastic limit when \' - \'" or equivalently;; - x, we have the result that

W(~) = I" :~,'i',
This substitution then leads to the classical interfacial results,

Defining Ir-(~ l. from (1'6), as

(AI3)

we follow the analysis ahove closely to define J(~) as

(AI4)

m can be deduced 10 he t-:ivclI as before hy (A-H, The main difference from tlie previous product split is that J(~)
has a lew at ± ill +0. (i,e. 011 the imaginary axis approached from the riglit) wilh

(AI5)

As 1fll ~ I, the lugarithm of J(iY)iJ" is undctined fur I ,,; Iyl ,,; fl, The branch cuts go from iO, to ± i".0 which
can be checked num.:rically. Taking

(AI6)

and

the main results arc

• I ((I log«3-4v),;) ('IOg«3-4V)I=zll), (/I-i~)
lugJ.(~) = i,ri Jo - (~v"::i~)dy+ J, --l,:-=i~)--'-dy + llug l:'i~ ,

(AI7)

(AIH)

. (IJ 1+()' Z 1( 1(1) J" _ dl' f,'~IOg(3-4V)I';1Id.v)J(-)=1 ---,- .:xp- lug(3-4v)tan' - + (~logl=I+I'I1)-i":"+----'-'--':-i------'
, "I +~' It ~,,' (y-+.;-) , (Y-+';')

(AI9)

The product split of n(~) into a product of functions analytic in thc "upper", and "Iowcr" half complcx ~
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planes respectively. is similar to the factorization of the function N(~) performed in Appendix I of Atkinson and
Craster ( 1991). As a result the factorization is only sketched briefly here. Recalling that

O(~) = (-ln~I+13-4vu)rj). (AZO)

This function has branch cuts from ±iO. to ±i and can be shown to have no zeros in the cut plane. The
functions 0 •. 0, are defined in the usual manner by' similar Cauchy representations to (A5) with 0 replacing J.
Asymptotically as

In particular by collapsing the contour integrals around the branch cuts we can deduce that

, -If" ,'Gp(I-P')") dp10g10,1,ll = - tan '(3 4 )' (~)'
7t" +-I'."P-I,

_((3-4V.)([ -V»)"
0.(0) - 13-4v)([ -v.) •

which is chLocked numerically against (178) and

(
I r' "( PII-P')") 2PdP)

010 = -O"exp -;t J" tan p' + (3 -4v.)rj Ip' + ~') .

(A2[)

(AZZ)

(A23)

which is checked numerically against IA20) using the gcneral purposc NAG integration routine DOIAJF. The
results are accurate to machine accuracy. The product split of O(~) is related to that of N(~) in Crasler and
Atkinson I I'NZ) letting

(AZ4)

we can deduce that O(~) [unlike N(~)I has no 7,eros in the cut plane. therefore

0,(0) =U,(O);lnd

. (If"( p' ) 2P dP )0(.;) = 0 exp - t'an' ,---.------ ----
0' It,,' (l-p')'/'(p'-(3-4v.)'i) (p'+~') .

(A25)

(A2b)

which can be verified numerically. [n the steadily propagating case the functions which arise can be split in a
similar manner and the results arc just quoted here. Note that in the steady case r' is now defined as r 1 =e1 + i~.

r.= 1/2

- (') , ~~. '-(3 4X, ~ = ~-r +1" - v.),. (A27,A28)

. ~~ ( I~I (I~I-f»)(1)(';)=--- - 1--+---
~': 2".e 2irj(l-v.J'

which has a 7.ero at -iP+O, with

(A29)

(A30)

(A3[)
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(A32)

. = I (/3-i~) I f.' (3_4V) (1- 2~, - 21f(l.l~vJ + -.,.i~_=--~~-,'/=--~_~~_')) dy
logw.(,) = ,log --.• +-..., 101Z ( , ") --

. l-I~ 2m" ~ I+~+ Y +i(Y-y"J' y-i~

2", 2If(l-vu) 2If(l-v,)

1 ~:£'

+ '" J log
~m ,

(
I l"'-l"(y2+~.)I.')

(3-4v) 1- - +.. . _
2", 21f( 1- v,)(y2 +y)' • dy

y-i';·
(A33)

APPENDIX 2: FOURIER RESULTS

To evaluate the asymptotic behaviour of the stress fields we require the following Fourier inversion

(A34)

Recalling that the functions ~', l '" ,,, have branch cuts from iO, to ±ico the integral is evaluated (for n integer
and: real) by collapsing this integral around the branch cut from iO to - jet). The result ,'(:),'(1 -:) = It cosec
(It:) is also required to give the following T'LUberian result

and ,'I:). the Gamma fum;tion. is dclined in the usual manner to be

}'(:+I) = r'l'e'dl.

J"

(A35)

(A36)

Also to invert the: minus transforms we have: 1_( -x) = I~ (x), i.e. the complex conjugate of the: e:quivale:nt plus
transform.

APPENDIX 3

The Fourier transformed displacements, stresses and pore pressure:

(A37)

(A38)

(A39)

(A40)

(A41)

(A42)

APPENDIX 4: THE FULLY MIXED PROBLEM

In previous papers Atkinson and Craster (1991) and Craster and Atkinson (1992). the problems of fracture
in undamaged continuous materials are considered. In particular the situation of mixed pore pressure boundary
conditions is investigated. e.g. in the tensile case consider a permeable crack; the symmetry of the problem then
sets an impermeable condition on the fracture plane ahead of the crack. In the interfacial situation we could
similarly consider a crack with permeable crack faces with the interface ahead of the crack impermeable. Let us
briefly consider the impulsive case cf. Section 3.1 and in addition to (55)-(58) define the following half range
transforms;
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p. = f.'" P(X,O,s)e'~.r dX,
_ fO cP(X,O,s) ~r

R_ - _ < cy e' dX, (A43,A44)

and use the same loadings as in Section 3.1. The resulting matrix Wiener-Hopf equation is

(A45)

£} and Z(~) are defined as in (A24), (68) and

(A46)

The added complication of the milled pore pressure boundary conditions introduces an asymmetry in the matrix
equations which we, so far, have been unable to factorize.

APPENDIX 5: NUMERICAL INVERSION OF LAPLACE TRANSFORMS

In the previous works by the authors we have used the Stehfest (1970) algorithm to invert Laplace transforms
numerically. This algorithm has proved to be both fast and accurate, but suffers from numerical rounding errors
which can corrupt the results. The algorithm is not suitable for inverting functions which arc complex and have
unusual behaviour at particular points. In our case the function J. (i/a,) is a function which is discontinuous at
the origin as it is approached from 0 t. In this case a better algorithm is that of Talbot (1979) which is in essence
based on the earlier thesis of Green (1955). The :llgorithm has to be slightly adapted for use here. In Talbot's
paper the Bromwich inversion contour is replaced by a substitute contour, f., with ~l(s) - - a.J at each end. This
avoids complications, from the oseillations of e", which would arise in the direct numerical integration along the
Bromwich contour. This substitute contour clcarly h:ls to enclose all the singularities and branch cuts of the
function to be invertcd, so limits the range of application of the method. i.c. functions with an infinite number of
singularities with imaginary parts tending to inlinity could not be invertcd, but the method is sulliciently gcncral
to invert most functions usually encountered.

The notation used here will follow Talbot very closely and the adaptation required will be bricRy sketched.
Taking the function to be inverted :\S F(s) we can introduce a scaling .i. and shift a parameter which are used to
ensure that L contains all the singularitics. Then we invert F(b +a) :

;. ," i
/(1) = ~ c""F(.i.s+a)ds.

_It1 l.

Now Talbot maps the intcrval -2lti to hi onto a path, M, described by an analytie function

s = S(:) = ;(coth~ +v).
with v a fr~'C parameter, so that

I f If"/(1) = ,,-: Q(:) d: = ,,-: Q(iy) dy,
_7tl .w _7'1:1 _:,..

(A47)

(A48)

with Q(:) =.i. e';.... ·"F(.i.S+a)S·(:). Talbot then assumes that Q(-iy) = Q"(iy). This is true if F(s) is real,
however, J .(i:a,) in the text is complex so we follow Talbot by defining

k1t
0.=-, a=OcotO, S(:)=:r+ivO, p=O+a(:r-I)O,

n

S'(:) = ~(v+iP), F(..ls+a) = G,+iH" F«..ls+a)") = G,+iH,.

(A49)

(A50)

then approximate the integral (A47) with the trapezoidal rule and take a suitable choice of a, .i., v and n. /(1)
becomes
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+{(vH~-PG~l -(fiG, + .Hdl sin (vOr) +iH{JG, .... ,B,) +( - {JG, + vH~)cos (vOl)

+i(("G,-PH,)-(,.G,+pH~»sin(v8!))I._" •. (ASI)

The prime on the summation is used to denote that we take half the values in the sum when k lakes the values 0
and n - I. The error in this algorithm is discussed in some detail by Talbot and a similar analjsis will hold here.


